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Abstract
We compare and contrast two recently reported mesoscopic fluid particle
models based on a two-dimensional Voronoi tessellation. Both models describe
a Newtonian fluid at mesoscopic scales where fluctuations are important. From
the requirement of thermodynamic consistency, the equilibrium distribution
function is given through the Einstein distribution function. We compute from
the Einstein distribution the equilibrium distribution function for a single fluid
particle. We observe excellent agreement between the simulation results for
the proposed models and the theoretical distribution function.

PACS numbers: 47.10.+g, 05.20.−y

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The dynamical regimes of complex fluids such as colloidal suspensions or polymeric solutions
are strongly affected by the fluctuating character of the solvent. The Brownian diffusive
character of small suspended objects can be traced back to the stochastic nature of the
surrounding fluid [1]. Mathematically, the equations of the fluctuating hydrodynamics (FH)
[2] model in the continuum limit the mesoscopic regime of a simple Newtonian fluid. This
regime corresponds to small length scales where, although the fluid is still well represented
by hydrodynamics (a kinetic description is not yet needed), the molecular nature of the fluid
is already appreciable and it is modelled through the inclusion of random noise terms in the
hydrodynamic equations. The noise appears as the divergence of a random stress tensor and
random heat flux, and the structure of these random fluxes is entirely determined from the
fluctuation–dissipation theorem [2, 3]. The mesoscopic regime of hydrodynamics is relevant
not only in problems involving complex fluids, but also in simple fluids when probed at
short-length scales, as, for example, in light scattering experiments.
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A simulation of a fluid at mesoscopic scales could be based on a discretization of the
fluctuating hydrodynamic equations which, however, requires some care [4]. One should
introduce the discrete random terms in such a way that they are compatible with the discrete
form of the dissipation in the equations, in strict respect of the fluctuation–dissipation theorem
even at the discrete level. Only in this way does one expect to have the Einstein distribution
for mesoscopic variables as the equilibrium distribution function. Also, one should be careful
in selecting thermal fluctuations with respect to conservation of mass, momentum and energy.

Recently, two models have been devised and implemented in order to simulate fluctuating
hydrodynamics [5, 6]. Both are based on a dynamical Voronoi Lagrangian grid that follows
the flow field. The main differences between both models are the use of entropy or energy as
an independent variable and, more importantly, how the velocity and temperature gradients
are discretized. From a methodological point of view, we use different though equivalent
and complementary ways of obtaining the stochastic forces in order to fulfil the fluctuation–
dissipation theorem. The first approach [5, 7] consists in writing the equilibrium distribution for
the set of variables, guessing the structure of the random noise, computing the Fokker–Planck
operator acting equation corresponding to the Langevin equations and deriving the coefficients
of the noise by balancing the diffusive and drift parts of the Fokker–Planck operator acting
on the equilibrium distribution. The second approach uses the GENERIC formalism [6, 8].
GENERIC is a very general framework for non-equilibrium thermodynamics which encodes
in a very simple way the physics behind the first and second laws of thermodynamics and
the fluctuation–dissipation theorem. It must be emphasized that the GENERIC formalism
does not include any new physics, but permits one to rapidly identify whether or not a
model is thermodynamically consistent and, if it is not, offers suggestions on how to restore
thermodynamic consistency. The model in [6] produces results of higher numerical accuracy
than the model in [5]. This is because the evaluation of gradients, using both nearest and next-
nearest neighbour data, is more precise in the former model. In the latter model, however,
interactions are strictly local in the sense that only nearest-neighbour interactions take place.
This feature brings the latter model closer to existing DPD models [9, 10], and it may prove
useful in applications where interaction forces other than those within a simple Newtonian
fluid are included.

In section 2 we review both models, discussing their similarities and differences. We show
that the reversible part of the dynamics of the model in [5] has a tiny production of entropy,
but it can be easily modified in order to have a zero production of entropy as corresponds to
a purely reversible dynamics. We also show in an appendix that the irreversible part of the
dynamics of the model in [5] can be cast in the GENERIC formalism thus ensuring a positive
entropy production. In section 3 we discuss how one can derive from the N-particle Einstein
distribution function the one-particle distribution function, which is the object measurable
in simulations. This allows one to discuss the validity of the models in order to simulate
fluctuating hydrodynamics.

2. The models

The models in [5, 6] can be understood as discretized versions of the continuum equations
of fluctuating hydrodynamics in terms of fluid particles that move following the flow. The
advantage of a Lagrangian description is apparent when one thinks of the highly complex and
evolving interstitial domains in a colloidal suspension where the solvent fluid evolves. The
fluid particles have definite positions Ri and have associated a region of space around each
given by its Voronoi cell. Each cell is defined as the region of space closer to the centre of
that cell than to any other cell centre. This produces a partition of physical space into a set
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of non-overlapping regions, the so called Voronoi tessellation. Each cell can be regarded as
a thermodynamic subsystem of the whole fluid system and is associated with a mass Mi, a
momentum P i and an internal energy E i , which can be defined in microscopic terms from
the momenta and coordinates of the molecules that constitute the fluid [5]. The cells also
have a specified volume Vi , which is a geometrical quantity dependent on the coordinates of
the cell centres, and an entropy function Si, which is a prescribed thermodynamic function of
the extensive variables Mi, Ei ,Vi . We will refer to the fluid particles defined in terms of the
Voronoi cells as mesoparticles.

The equations of motion for the mesoscopic variables have been obtained either from
molecular considerations [5] plus simple finite difference approximation of velocity gradients,
or from a finite volume discretization of the Navier–Stokes equations [6]. We discuss the
connections and differences between these two models by separating the equations of motion
into their reversible and irreversible parts.

2.1. Reversible part

The evolution equations of an inviscid fluid are completely reversible. By selecting as
independent state variables the position, mass, momentum and entropy Ri ,Mi,P i , Si , for
i = 1, . . . , N , the reversible part of the dynamics of a discrete model for an inviscid fluid is
given by [6]

Ṙi = vi

Ṗ i =
∑
j

Aijeij

Pj − Pi

2
+
∑
j

Aij

Rij

ρi + ρj

2

vi + vj

2
cij · vij

+
∑
j

Aij

Rij

cij

(
(Pi − Pj ) − ρi + ρj

2
(µi − µj ) − si + sj

2
(Ti − Tj )

)
(1)

Ṁi =
∑
j

Aij

Rij

ρi + ρj

2
cij · vij

Ṡi =
∑
j

Aij

Rij

si + sj

2
cij · vij .

Here, vi = P i/Mi is the velocity (vij = vi − vj ), ρi = Mi/Vi is the mass density and
si = Si/Vi is the entropy density. The pressure Pi and the temperature Ti are given through
the equilibrium equations of state as functions of the intensive variables ρi, si. We have also
introduced geometric quantities arising from the Voronoi construction: Aij is the area (length
in 2D) of the face between cells i, j, eij = (Ri − Rj )/Rij with Rij = |Ri − Rj | being the
unit vector normal to the face i, j and, finally, cij is a vector parallel to the face i, j pointing
from (Ri + Rj )/2 to the centre of the face i, j.

The following term in the momentum equation in equations (1)∑
j

Aij

Rij

cij

(
(Pi − Pj ) − ρi + ρj

2
(µi − µj) − si + sj

2
(Ti − Tj )

)
(2)

is strongly reminiscent of the Gibbs–Duhem relation which, in differential form, is
dP −ρdµ− sdT = 0. For this reason, we expect that this term (2), although not exactly zero,
is very small, and this has been checked in actual simulations [6]. It is rather easy to show that
total mass

∑
i Mi , momentum

∑
i P i , and energy

∑
i P

2/2Mi + E(Mi, Si,Vi ) are conserved
exactly and that the total entropy

∑
i Si does not change in time due to this reversible motion. It
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can also be shown that the above equations can be understood as a finite volume discretization
of the Euler equations for an inviscid fluid [6].

On the other hand, the reversible part of the dynamics in [5] is given in terms of energy
instead of entropy. The equations for the position and mass evolution are identical to those in
(1), the equation for the momentum evolution differs only in the absence of the Gibbs–Duhem
term (2) and the equation for the internal energy evolution is given by [5]

Ėi =
∑
j

Aij

Rij

εi + εj

2
cij ·vij −

∑
j

Aij

pi + pj

2
eij ·vij (3)

where εi = Ei/Vi . It can be shown that if one computes the time derivative of the total
entropy with the equations in [5], one obtains a nonzero production of entropy which involves
a discrete version of the Gibbs–Duhem relation, analogous to (2). This term is expected to be
very small and in practical situations is completely negligible when compared with the entropy
production due to the irreversible part of the dynamics. Nevertheless, we propose an energy
evolution which respects the zero entropy production of the reversible part of the dynamics.
From equations (1) and the chain rule applied to E(Mi, Si,Vi ) one readily arrives at

Ėi = −∂Ei

∂Vi

V̇i +
∂Ei

∂Mi

Ṁi +
∂Ei

∂Si

Ṡi = Pi

∑
j

1

2
Aijeij ·vij − Pi

∑ Aij

Rij

cij · vij

+µi

∑ ρi + ρj

2

Aij

Rij

cij · vij + Ti

∑ si + sj

2

Aij

Rij

cij ·vij (4)

where we have used the particular form of the volume in terms of the positions of the Voronoi
cells as given in [6] and the usual thermodynamic definition of the intensive parameters Pi, Ti

and µi. Here, the entropy Si = S(Mi,Ei,Vi ) should be understood as the dependent variable.
It is possible to show, following the steps of [6], that equation (4) can be interpreted as a finite
volume discretization, valid to first order in spatial gradients, of the continuum equation

∂tε = −∇ · (εv) − P∇ · v. (5)

2.2. Irreversible part

The dissipative part in the Navier–Stokes equations involves the (negative) divergences of the
stress tensor and heat flux, given by the usual forms

Π = η(∇v + (∇v)T ) Jq = κ∇T (6)

where η is the shear viscosity (we have assumed a zero bulk viscosity for simplicity), κ is the
thermal conductivity and (∇v)T is the transpose of the velocity gradient tensor.

The main difference in the dissipative part of the equations between the models in [5] and
[6] appears in the form selected by the discrete versions of the stress tensor and the heat flux.
The comparison can be made explicit by noting that the divergence of a flux J in a given cell
can be approximated, up to first order in spatial derivatives, through [6]

[∇ · J]i = − 1

Vi

∑
j

Aijeij · [J]ij (7)

where [∇ ·J ]i is the spatial average of ∇ ·J over the volume of cell i and [J ]ij is the spatial
average of the field J over the face joining cells i, j. The physical meaning of (7) is apparent
when one thinks of Aijeij as the surface normal vector of face i, j.
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In [5], the averages of the stress tensor and heat flux fields over the face i, j are approximated
by the expressions

[Π]αβij = η
1

Rij

(
vα
ije

β

ij + eα
ijv

β

ij

)
(8)

[Jq]ij = κ
1

Rij

(Ti − Tj ).

On the other hand, in [6] the average [J ]ij of the flux over the face i, j in equation (7) is
approximated by the arithmetic mean [J]ij = ([J ]i + [J ]j )/2 and then, the flux [J]i on cell
i (similarly for cell j), which is given in terms of the spatial derivatives (6), is approximated
again by (7). The resulting discrete stress tensor and heat flux of [6] are given by

[Π]αβi = η

Vi


1

2

∑
j

Aij

[
eα
ijv

β

j + e
β

ijv
α
j

]− 1

D
δαβ
∑
j

Aijeij ·vj




(9)
[Jq]i = κ

2Vi

∑
j

Aijeij Tj .

The different structures of the discrete stress tensor and heat flux in equations (8) and (9)
lead to different dissipative terms in the equations of motion. In the model in [5], the dissipative
interactions appear in the form of pairwise interactions between the Voronoi cells, much in
the spirit of the original DPD model [7, 10], whereas in the model in [6], the interaction is
not pairwise, but includes information about neighbours of a given pair. This seems to have
significant implications in the numerical simulations. For example, we have shown in [6] that
the measured kinematic viscosity is in very good agreement with the input viscosity when
the stress tensor is given by (9), while it is 10% off for the form (8) [5]. This may be due
to the fact that equations (8) are too crude an approximation for the stress tensor since we
actually compute the gradient only in the direction along Rij . In the discrete implementation
in equation (9) we capture more information about the stress tensor, so producing more
satisfactory numerical results.

3. Equilibrium distributions for the stochastic model

In section 2 we have discussed the deterministic equations for the discrete model of a
Newtonian fluid. If the Voronoi cells are mesoscopic in their physical size, they will be
subject to thermodynamic fluctuations. These fluctuations can be easily introduced following
the methods of [5, 6] and we show in the appendix how they can be formulated for the
model in [5] by the use of the GENERIC formalism as developed in [6]. The resulting
stochastic differential equations are mathematically equivalent to a Fokker–Planck equation
that governs the probability distribution function ρ = ρ(x, t) that each Voronoi cell has a
particular realization of the state variables denoted globally by x. In the GENERIC notation,
this Fokker–Planck equation has the form [8]

∂tρ = − ∂

∂x

[
ρ

[
L
∂E

∂x
+ M

∂S

∂x

]
− kBM

∂ρ

∂x

]
(10)

where kB is Boltzmann’s constant and L and M are the reversible and irreversible matrices,
respectively.

The distribution function of the variables of a given system at equilibrium is given by the
Einstein distribution function. This assertion can be proved under quite general assumptions
on the mixing character of the microscopic dynamics of the system [11]. If the microscopic
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dynamics ensures the existence of dynamical invariants such as the energy E(x) and, perhaps,
other invariants I(x), then the Einstein distribution function takes the form [11]

ρeq(x) = g(E(x), I (x)) exp{S(x)/kB} (11)

where the function g is completely determined by the arbitrary initial distribution of the
dynamical invariants. For example, if at an initial time the values of the invariants E(x), I(x)
are known with high precision to be E0, I0, then the Einstein distribution function takes the
form

ρeq(x) = δ(E(x) − E0)δ(I (x) − I0)

$(E0, I0)
exp
{
k−1
B S(x)

}
(12)

where $(E0, I0) is the normalization factor. Given the general argument behind the Einstein
distribution function [11], it is sensible to demand that the Fokker–Planck equation (10) has as
its (unique) equilibrium distribution function the Einstein distribution. This can be achieved
if the following further conditions on the form of the matrices L, M hold [8]

∂

∂x

[
L
∂E

∂x

]
= 0 M

∂I

∂x
= 0. (13)

The second condition is just the requirement that the dissipative part of the dynamics should
conserve the total mass, energy and momentum of the system. The first condition can be
understood as an incompressibility condition on the reversible dynamics of the system in
the state space x. We should note that this incompressibility equation is only approximately
satisfied by our reversible dynamics. Nevertheless, as we will show in what follows, the
Einstein distribution function is still a very good approximation for the equilibrium solution
of the Fokker–Planck equation.

3.1. Equilibrium N-particle distribution function

In this section we discuss the equilibrium distribution function ρeq(x) corresponding to the
equations of motion of our discrete models [5, 6]. Note that the equilibrium distribution
function is the same, irrespective of the actual form of the irreversible part of the dynamics.
This is because both sets of equations have the so-called GENERIC structure. The GENERIC
structure of the equations of motion ensures that the equilibrium distribution function for these
variables is given by the Einstein distribution function in the presence of dynamical invariants
(equation (11)). As the total mass M(x), total energy E(x) and momentum P (x) are conserved
by the dynamics, the Einstein distribution function will be given in our models by

ρeq(x) = 1

$
δ(M(x) − M0)δ(E(x) − E0)δ(P (x) − P 0) × exp

{
k−1
B S(x)

}
(14)

where we have assumed that we know with absolute precision the values of the total mass M0,
energy E0 and momentum P 0 at the initial time. This is the situation in a computer simulation.
Here $ is a factor that ensures the correct normalization of ρeq(x). The total energy and
entropy in our models have the forms E(x) =∑i P

2
i /2Mi + Ei and S(x) =∑i Si .

A word is in order about the total volume. We note that any configuration of positions
Ri of the Voronoi particles has the property that the total volume is conserved

∑
i Vi = V0.

Therefore, even though the total volume is conserved, it does not produce a restriction in the
form of a delta function in equation (14). Actually, for our models, it is more convenient to
consider the probability of a particular realization of the total set of variables {V,P ,M, S}
instead of {R,P ,M, S}. This is calculated as

P({V,P ,M, S}) =
∫

{dR}δN(V − V({R}))ρeq(x). (15)
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Because ρeq(x) depends on the positions only through the volume variable, we have

P({V,P ,M, S}) = F(V1, . . . , VN)ρ
eq({V,P ,M, S}) (16)

where

F(V1, . . . , VN) =
∫

d{R}
N∏
i

δ(Vi − Vi({R})). (17)

This function F is proportional to the probability density that the particles have the particular
distribution of volumes V1, . . . , VN provided that the distribution function of the positions is
uniform. Note that, because F(V1, . . . , VN) does not contain information about the location
of the volumes, we expect that the probability that a given cell has a particular volume is
independent of the vast majority of the volumes of the rest of the cells. In this way, we
expect that an approximation in which the volumes are statistically independent in a random
distribution of cells might be a good one, particularly if the number M of cells is very large.
However, there is a global correlation that must be respected, namely that of total volume
conservation. Therefore, we expect

F(V1, . . . , VN) ∝ F(V1) · · ·F(VN)δ

(∑
i

Vi − V0

)
(18)

where F(V ) is the probability density that, in a random distribution of points, the volume of a
Voronoi cell is V , irrespective of the values of the volumes of other cells. The exact analytical
calculation of the function F(V ) is difficult, but a phenomenological expression has been
given in [12]. As the only scale in a random distribution of points is the average volume of
each cell, the volume distribution function should have a scaling form

F(V ) = 1

V̄
φ

(
V

V̄

)
(19)

where V̄ represents the mean volume value for the cell. The function φ(x) is the gamma
distribution function [12]

φ(x) = νν

)(ν)
xν−1 exp{−νx} (20)

properly normalized to unity,
∫∞

0 φ(x) dx = 1. Here, ν is a constant parameter governing the
shape of the distribution.

In figure 1 we plot the cell volume distribution of a Voronoi tessellation of an ensemble
of uniform random sets of points, together with a fitted gamma distribution with value ν =
3.8420 and V̄ = 0.0025.

3.2. The most probable state

The most probable state at equilibrium according to equation (14) is the one that maximizes
the entropy S(x) subject to the constraints M(x) = M0, E(x) = E0 and P (x) = P 0. By
introducing Lagrange multipliers β, λ and V , the most probable state is the one that
maximizes k−1

B S(x) − β(E(x) − V · P (x) − λM(x)) without constraints. By equating the
partial derivatives with respect to every variable to zero, one obtains the following implicit
equations for the most probable values x∗ = {R∗

i ,P
∗
i ,M

∗
i , S

∗
i } where ∗ indicates the most

probable state∑
j

∂Vj

∂Ri

Pj (x
∗) = 0

P ∗
i

M∗
i

= V µi(x
∗) = λ +

D

2
V 2 Ti(x

∗) = 1

kBβ
(21)
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Figure 1. Distribution function for the Voronoi volume of a random distribution of points for a
simulation with M = 400 particles in a two-dimensional periodic boundary box of length L = 1
(dots). The continuous line corresponds to equation (19) with ν = 3.8420 and V̄ = 0.0025.

where D is the number of space dimensions. The second equation in (21) states that in the
most probable state all particles move at the same velocity V which might be set to zero
without loss of generality. The last two equations state, then, that the chemical potential per
unit mass and the temperature of all the fluid particles are equal at the most probable value of
the discrete hydrodynamic variables. This implies that the pressure is also the same for all the
fluid particles (in a simple fluid the intensive parameters are not independent [13]). The first
equation is, therefore, trivially satisfied (because

∑
j Vj = V0, which is independent of Ri).

3.3. Equilibrium single-particle distribution function

In order to compare simulation and theoretical results, it is necessary to consider the single-
particle distribution function instead of the multidimensional N-particle distribution. For
this reason, as a first step, we will integrate all the momentum variables except that of the
first particle. The outcome will be to convert the ‘microcanonical’ distribution (14) into a
‘canonical’ distribution. Afterwards, we will integrate over the volume, mass and entropy
of all the particles except the first particle. We denote the state by x = (y, {P }) where
y = ({V }, {M}, {S}) is the set of volumes, masses and entropies of all particles. Note that the
total entropy and internal energy do not depend on momentum variables.

By integrating the distribution function ρeq(x) over all momenta except P 1 we obtain the
probability ρeq(P 1, y)

ρeq(P 1, y) =
∏
i

F (Vi)

$0
exp

{
S(y)

kB

}
δ

(
N∑
i

Mi − M0

)
δ

(
N∑
i

Vi − V0

)

×
N∏

µ=2

(2Mi)
D/2 ωD(N−2)

2

[
E0 −

∑
i

Ei(y) − P 2
1

2M1

] D(N−2)
2 −1

(22)

where we have used the following equation, which is proved in appendix VII of [14],∫
dDNP δ

(
N∑
i

P 2
i

2Mi

− E0

)
δD

(
N∑
i

P i − P 0

)
= 1

2
ωD(N−1)U

D(N−1)−2
2

0

N∏
i

(2Mi)
D/2 (23)
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where D is the spatial dimensionality, U0 = E0 − P2
0/2M0, and

ωN = 2
πN/2

)(N/2)
. (24)

We now find a convenient approximation to equation (22) by noting that this probability
is expected to be highly peaked around the most probable state. Therefore, for those values of
Ei(y) for which ρeq(P 1, y) is appreciably different from zero we can approximate it with an
exponential [

E0 −
∑
i

Ei − P 2
1

2M1

]P

∝ exp

{
−β∗

(∑
i

Ei +
P 2

1

2M1

)}
(25)

where P = D(M − 2)/2 − 1 � 1. We have introduced the parameter β∗ as

β∗ = D(M − 1)/2 − 1

E0 −∑j E
∗
j

≈ DM/2

E0 −∑j E
∗
j

(26)

where Ei
∗ is the most probable value of Ei. The parameter β∗ is proportional to the inverse of

the most probable kinetic energy. Finally, we can write equation (22) as

ρeq(P 1, y) =
∏
i

F (Vi)

$0
δ

(
N∑
i

Mi − M0

)
δ

(
N∑
i

Vi − V0

)

× exp

{
S(y)

kB
− β∗

N∑
i

Ei(y) − β∗ P 2
1

2M1

}
(27)

where $0 is a normalization constant. In equation (27) we have neglected a term
∑

i logMi

since it is much less than
∑

i Ei(y). Note that Ei is a first-order function of its arguments
Si,Mi, Vi and, therefore, it is of order Mi.

We are also interested in the distribution function P(V1,P 1,M1, S1). This is the
probability that a particular mesoparticle takes the values V1,P 1,M1, S1 for its variables,
independently from the values of the rest of the variables in the system. We want to integrate
(27) over the variables V,M, S of all particles except V1,P 1,M1, S1. We can rewrite

P(V1,P 1,M1, S1) = 1

$′
0

F(V1)/(M0 − M1,V0 − V1)

× exp

{
S1

kB
− β∗E1(M1, S1, V1) − β∗ P 2

1

2M1

}
(28)

where we have introduced the function

/(M,V) =
∫

d(N−1){V }d(N−1){M}d(N−1){S}
N∏
i=2

F(Vi)δ

(
N∑
i=2

Mi − M
)

× δ

(
N∑
i=2

Vi − V
)

exp

{
N∑
i=2

Si

kB
− β∗Ei(Mi, Si, Vi)

}
. (29)

The functional form of /(M,V) is very well approximated by an exponential, as can be seen
by taking derivatives with respect to M and V . We expect that when the number of variables
M is very large, the integrand becomes highly peaked around this most probable value and
then direct computations show

∂

∂M/(M,V) ≈ −β∗λ∗/(M,V) ∂

∂V/(M,V) ≈ β∗0∗/(M,V) (30)
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where 0∗ and λ∗ are suitable Lagrange multipliers accounting for the mass and volume
conservation. Therefore,

/(M,V) ≈ exp{−β∗(λ∗M − 0∗V)}. (31)

Returning to equation (28) we have the final result for the single-particle distribution function
as

P(V1,P 1,M1, S1) = 1

Z
F(V1) exp

{
S1

kB
− β∗

(
E(M1, S1, V1) +

P 2
1

2M1
− λ∗M1 + 0∗V1

)}

(32)

where Z is an appropriate normalization factor. The form of the single-particle distribution
function can be interpreted as the probability that a subsystem that can exchange mass,
momentum, energy and volume with a thermal bath (whose intensive parameters are β∗, λ∗,
0∗) has particular values of these extensive variables. Note that, although the momentum
distribution looks Gaussian, it is not statistically independent of the mass. Regarding the
volume, the presence of the factor F(V ) inhibits an interpretation of 0∗ as giving directly the
pressure of the thermal bath.

The most probable values of the single-particle distribution function (32), denoted with a
double star, are given by

P ∗∗
i +

F ′(V )

β∗F(V )
= 0∗ P ∗∗

i = 0 µ∗∗
i = λ∗ T ∗∗

i = 1

kBβ∗ (33)

which should be compared with equations (21). Here, Pi
∗∗ is the most probable value of the

pressure of particle i. Note the connection between β∗ (related to the most probable value of
the kinetic energy) and the most probable thermodynamic temperature in equation (33). Note
also that the most probable value of the single-particle distribution function x∗∗ in equation (33)
does not exactly coincide with the most probable value of the N-particle distribution function
x∗ of equations (21) due to the integrations involved. However, the discrepancies are expected
to be very small.

3.4. Single-variable distribution functions of a mesoparticle

Note that, in a simulation, it is difficult to measure the distribution function (32) due to the
large number of variables involved (five), which would necessitate binning of frequencies of
occurences in a five-dimensional space. Clearly what we need are the distribution functions
over a single variable. In this section, we compute these further marginal distribution functions.

The joint probability distribution function of the volume, mass and entropy of one particle
is easily obtained because the momentum variables P̃ are trivially integrated

P(V,M, S) ∝ 1

Z
F(V )

(
2πM

β∗

)D
2

exp

{
S

kB
− β∗(E(M, S, V ) − λ∗M + 0∗V )

}
. (34)

By making use of the analytical expression for F(V ) in equation (19), and performing a
change of variables from entropy S to internal energy E, for an ideal gas, we can calculate the
mass and volume distribution function. The Jacobian is given by the temperature T(E). The
integral can be performed analytically and the result is (from now on we assume D = 2)

P(V,M) ∝ (V )ν−1M2

(
cV e2

M2β∗

) M
m0

)

(
M

m0

)
exp

{
−ν

V

V̄
+ β∗(λ∗M − 0∗V )

}
(35)

where )(x) is the gamma function, e = exp(1), m0 is the mass of the molecule of ideal
gas we are simulating and c is a dimensionless constant that depends only on microscopic
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parameters, being defined as the ratio between λ the typical distance between molecules at
chosen temperature Te and 5 the thermal wavelength

c =
(
λ

5

)2

= λ22πm0kBTe

h2
. (36)

We can now integrate over the volume variable in P(V,M) to obtain the mass distribution
function. Note that the integration limits are extended to (0,∞) because the range of variation
for one particle’s mass is very small compared to the total mass of the system,

P(M) ∝
∫ ∞

0
P(V,M) dV ∝ )

(
M

m0

)
)

(
ν +

M

m0

)(
M

m0

)2
(

1− M
m0

)

×
(

ce2

k2
Bβ

∗ (β∗0∗ + ν

V̄

)
) M

m0

exp{β∗λ∗M}. (37)

We next calculate the volume distribution function by integrating over the mass in equation
(35) as

P(V ) ∝ (V )ν−1 exp

{
−ν

V

V̄
− β∗0∗V

}
g(V, β∗, λ∗) (38)

where the function g(V, β∗, λ∗) is defined as

g(V, β∗, λ∗) =
∫ ∞

0
M

2
(

1− M
m0

) (
cV e2

β∗

) M
m0

)

(
M

m0

)
exp{β∗λ∗M}dM. (39)

We can extract the density distribution function very easily from equation (35)

P(ρ) =
∫

P(V,M)δ

(
ρ − M

V

)
dV dM =

∫
P(V, ρV )V dV ∝ ρ2h(ρ, λ∗, β∗,0∗) (40)

where we have introduced the function

h(ρ, λ∗, β∗,0∗) =
∫ ∞

0
V ν+2

(
cV e2

(ρV )2β∗

) ρV

m0

)

(
ρV

m0

)

× exp
{(

− ν

V̄
+ β∗(λ∗ρ − 0∗)

)
V
}

dV. (41)

Finally, we consider the momentum distribution function. After carrying out the entropy
and volume integrations in equation (32) we obtain

P(P x) =
√

β∗

2π

∫
P(M)√

M
exp

{
−β∗P

x2

2M

}
dM. (42)

4. Simulation results

We have already mentioned that the dissipative terms in the model of [6] produce slightly
better numerical results than those of [5] and for this reason we present the simulation data
for this model. The specific details of the simulations are those in [6]. We simulate Nmic =
40 000 atoms of argon, assumed to be an ideal gas. The system is at temperature Te = 273 K
in a periodic boundary box. The typical distance between molecules in an ideal gas at room
temperature and pressure in three dimensions is about λ = 3 × 10−9 m. If in two dimensions
we want to keep this typical distance, then the linear dimensions of our simulation box should

be L = N
1
2
mic 3 × 10−9 m = 6.67 × 10−7 m. In the following, all quantities are expressed in
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Figure 2. Equilibrium momentum distribution function. The dotted line corresponds to the
simulation results for P (P x). The continuous line corresponds to our prediction in equation (42)
for the value of β∗ = 39 947.26. The broken line corresponds to the best Gaussian fit; note,
however, that this should correspond to a system with a fixed mass of particles, which is not
actually the case in our simulations, as can be seen from the mass distribution function shown in
figure 4.

the reduced units defined in [6]. These simulations are performed using M = 400 mesoscopic
particles in a 2D box with box length L = 1, with constant shear and bulk viscosities and
thermal conductivity such that η = ζ = κ = 0.01. These mesoscopic particles contain
typically 100 argon atoms. In reduced units the temperature is initially set to T = 1 and the
density to ρ = 1.

The stochastic equations are integrated with an Euler scheme that conserves total
momentum and energy with a time step dt = 0.000 001 in reduced units. The initial state is set
as follows. From a random distribution of dissipative particle positions in the box, we obtain
the Voronoi volumes. We initialize the mesoparticle masses in such a way that we obtain a
constant density for the particles, equal to the global density of the system (ρ = 1). Then
the initial entropies and temperatures are calculated using the corresponding functions for the
ideal gas. The initial velocities are set to zero and consequently the total momentum is zero.
Note that this initial state, although close to equilibrium, is not an equilibrium state. We let
the system evolve to the equilibrium state and measure the equilibrium momentum, mass and
volume distribution functions.

The equilibrium momentum distribution function measured in the simulations is plotted
in figure 2. As a first approximation, we can fit it to a Gaussian function (broken line). It
is a reasonable fit, but we observe some significant discrepancies. The origin arises from the
fact that momentum and mass are not statistically independent. Of course, the momentum
distribution function is actually given by equation (42). If we use this equation with the
distribution function for the mass obtained in the simulations we obtain better agreement. The
best fit for the parameter is β∗ = 39 947.26, in perfect agreement with the value β∗ = 1

kbTe

provided by the global temperature of the ideal gas system compatible with the total mass,
momentum and energy of the system.

The identity between the kinetic temperature (given through β∗) and the thermodynamic
temperature in equation (33) is validated in the results shown in figure 3, where we plot the
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Figure 3. Time evolution for the kinetic and thermodynamic temperatures (dotted and continuous
lines, respectively). The mean values are Tthermo = 1.000 ± 0.004 and Tkin = 1.00 ± 0.08, in
reduced units. The kinetic temperature has bigger fluctuations, associated with the width of the
momentum distribution function in figure 2.
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Figure 4. Mass equilibrium distribution function. Dots correspond to simulation results. The
continuous line is the fit to equation (37) for the parameters β∗ = 39 947.26, 0∗ = 1.009 604 and
λ∗ = −10.619 795.

average kinetic energy per mesoparticle and the mean of all thermodynamic temperatures
obtained from the equation of state for each mesoparticle.

In figures 4–6 we show the mass, volume and density equilibrium distribution functions
for a single mesoparticle. Solid lines show the best fits of the simulation results to the nonlinear
functions dependent on the three parameters (β∗, 0∗, λ∗) given in equations (37), (38) and
(40). These fits have been obtained through a standard Levenberg–Marquardt nonlinear
least-squares routine. The parameter β∗ has been fitted from the momentum distribution
function. It is interesting to note that many pairs of values for 0∗, λ∗ provide individually
reasonable fits for the simulation dataP(M), P (V ), P (ρ). For this reason, we have minimized
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Figure 5. Volume equilibrium distribution function. Dots correspond to simulation results. The
continuous line is the fit to equation (38) for the fitted values β∗ = 39 947.26, 0∗ = 1.009 604 and
λ∗ = −10.619 795.
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Figure 6. Density equilibrium distribution function. Dots correspond to simulation results. The
continuous line is the fit to equation (40) for the fitted values β∗ = 39 947.26, 0∗ = 1.009 604 and
λ∗ = −10.619 795.

simultaneously the least-squares function for the three distributions. This procedure leads to
the optimal values β∗ = 39 947.26, 0∗ = 1.009 604 and λ∗ = −10.619 795. According
to equations (33) the Lagrange multipliers are directly connected with the most probable
values of the intensive parameters in the simulation. We have measured by direct simulation
the marginal equilibrium distributions of the intensive variables and find T ∗∗ = 1.001 32,
P∗∗ = 0.993 759 and λ∗∗ =−10.5556. We obtain perfect agreement with the temperature and
reasonable agreement with the pressure and chemical potential.

The size of the fluctuations, that is, the width of the distribution functions, depends on the
actual typical size of the Voronoi cells. For a given value of the density, for example, the larger
the volume (and the mass) of the cell, the smaller the width of the equilibrium distribution
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Figure 7. Density equilibrium distributions for two different typical mean mesoparticle volumes
(V̄ = 100, V̄ = 200) and the same mean density ρ = 1. The plot with smaller width corresponds
to the bigger mean volume.

function for the density, in accordance with the usual predictions of equilibrium statistical
mechanics. This is illustrated in figure 7. In a general situation, the size of the cells is dictated
by the relevant hydrodynamic length scale that must be resolved. Typically, the ‘radius’ of a
cell must be 20 times smaller than the relevant hydrodynamic length scale [6], accounting for
why it is necessary to include thermal fluctuations to simulate the hydrodynamic flow around a
micron-sized colloidal particle but not for simulating the flow around a centimetre-sized ping
pong ball.

When fluctuations are present, the entropy function S(x) might sometimes be a decreasing
function of time in a general situation. We show an example of this behaviour in figure 8 in an
equilibrium situation. Of course, the fluctuations are small in macroscopic terms. However,
if one considers the entropy functional

S[ρt ] =
∫

S(x)ρ(x, t) dx − kB

∫
ρ(x, t) ln ρ(x, t) dx (43)

it is possible to prove by using the Fokker–Planck equation (10) that ∂tS[ρt ] � 0 [8]. In
other words, the entropy functional plays the role of a Lyapunov function. At equilibrium, the
entropy S(x) should be a constant (its maximum value). In a stochastic simulation, however,
there are fluctuations in the entropy and, as a consequence, it might increase or decrease. Of
course, if the mesoparticles are very large (in the thermodynamic limit), the fluctuations are
negligible and the entropy function will be a monotonically increasing function of time.
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Figure 8. Time evolution for the total entropy S(x) of a system with noise. Simulation details
correspond to those of figures 4–6.

5. Discussion

In this paper we have discussed the relationship between two recently introduced models based
on mesoscopic Voronoi fluid particles [5, 6]. From a macroscopic perspective, the models can
be interpreted as finite volume discretizations of the Navier–Stokes equations in a Lagrangian
description. They include thermal fluctuations that obey a fluctuation–dissipation theorem
at the discrete level and, as a consequence, the equilibrium distribution function is given
by the Einstein distribution function. The molecularly based model in [5] has a reversible
part that produces a slight entropy increase which, strictly speaking, should be conserved.
Nevertheless, in practical situations this unphysical reversible entropy production is expected
to be negligible in comparison with the entropy production due to the irreversible part of the
dynamics. Concerning the latter, the models differ in the discrete approximations used for the
stress tensor and heat flux. It appears that the discretization in [6] produces better results for
numerical values of the transport coefficients due to its non-pairwise form.

We have computed analytically the marginal distribution functions corresponding to a
single mesoparticle from the Einstein distribution function, which is defined over all the
variables in the system. In practice, these are the only available distributions in a simulation.
Excellent agreement is obtained between the theoretical results and the simulations, conferring
full confidence in the models.

Several points concerning the actual implementation of the algorithms are worth
mentioning. For example, the volume distributions are broad and, this might cause spatial
resolution to be different in different flow regions. One might have large fluid particles
coexisting with smaller ones. However, the size of the largest fluid particles compared to the
hydrodynamic length scale to be resolved is what determines the appropriate resolution for
the flow problem. Because the number of largest fluid particles is given by the total number
of fluid particles, it is always possible to resolve a flow with a prescribed accuracy. Regarding
time integration, we have used a simple Euler scheme in order to integrate the stochastic
equations. This method requires very small time steps in order to reach the desired level of
energy conservation. We are currently developing higher order stochastic schemes that allow
time steps two orders of magnitude larger with the same level of energy conservation, and a
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three-dimensional version of the model [6], which has been recently implemented using the
CGAL library [15]. We hope to report on this work in the near future.
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Appendix. ‘GENERIC’ structure of the irreversible part of the dynamics

In this appendix we show that the irreversible part of the dynamics of the model in [5] can be
cast in the GENERIC formalism. We follow the notation in [6].

In order to derive the irreversible part of the dynamics of the DPD model and to get
thermodynamically consistent thermal fluctuations, a very useful route is to first postulate
the thermal noises dx̃ and then construct the dissipative matrix M through the fluctuation–
dissipation theorem,

M = dx̃ dx̃T

2kB dt
. (44)

In order to have conservation of the energy E(x) and other possible dynamical I(x), such as
momentum, the following restrictions apply on the noises

∂E

∂x
dx̃ = 0

∂I

∂x
dx̃ = 0 (45)

which ensure the usual GENERIC degeneracy requirements

M
∂E

∂x
= 0 M

∂I

∂x
= 0. (46)

We postulate the following form for the thermal noises dx̃ = {0, dP̃ i , dẼi}. Note that we
do not assume any fluctuation in the mass, in accordance with the expectation that the mass
equation does not contain any irreversibility. The momentum and energy random terms are
postulated to be

dP̃ i =
∑
j

Bij dW̄ijeij

dẼi = −1

2

∑
j

Bij dW̄ij : eij ·vij +
∑
j

Cij dVij . (47)

Here, i, j label the Voronoi cells, eij = Rij /|R|ij is the unit vector joining the cell centres,
and vij = vi − vj is the relative velocity between cells i, j. The double dot means double
contraction. We have introduced, for each pair i, j of (neighbour) cells, a matrix of independent
increments of the Wiener process dWij . Its traceless symmetric part dW̄ij is given by

dW̄αβ

ij = 1
2

[
dWαβ

ij + dWβα

ij

]
(48)

where D is the space dimension. As a convention, superscripts refer to tensorial components
while subscripts label different cells.

In equation (47) we have also introduced an independent increment of the Wiener process
for each pair of (neighbour) cells, dVij . Finally, the functions Bij , Cij might depend on the
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state of the system through the mass and internal energy of the particles. We postulate the
following symmetry properties

dWij = dWji dVij = −dVji Bij = Bji Cij = Cji . (49)

The independent increments of the Wiener processes satisfy the following Itô mnemotechnical
rules

dWαα′
ii′ dWββ ′

jj ′ = [δij δi′j ′ + δij ′δi′j ]δαβδα
′β ′

dt

dVii′ dVjj ′ = [δijδi′j ′ − δij ′δi′j ] dt

dWαα′
ii′ dVjj ′ = 0 (50)

which respect the symmetries (49) under particle interchange. The properties (50) imply the
following stochastic properties of the noise in equation (48)

dWαα′
ii′ dWββ ′

jj ′ = 1
2 [δij δi′j ′ + δij ′δi′j ][δαβδα

′β ′
+ δαβ

′
δα

′β] dt . (51)

The dynamical invariants are the total linear momentum and the total energy (no angular
momentum conservation is imposed). These total quantities are given by

E(x) =
∑
i

P 2
i

2Mi

+ Ei P (x) =
∑
i

P i . (52)

Their derivatives with respect to the state variables are

∂E

∂x
→


− v2

j

2
vj

1


 ∂P

∂x
→

 0

1
0


 (53)

where vj = P j /Mj is the velocity of cell i. It is a trivial exercise to show that equations (45),
which now take the form∑

i

vi · dP̃ i + dẼi = 0
∑
i

dP̃ i = 0 (54)

are exactly satisfied, due to the symmetries (49). In this way, the postulated noises exactly
conserve momentum and energy.

A. Deterministic equations

The derivatives of the entropy function are

∂S

∂x
→




−µj

Tj

0
1
Tj


 (55)

where we have defined the chemical potential per unit mass µi and temperature Ti according
to the usual definitions,

µi

Ti

= − ∂Si

∂Mi

∣∣∣∣
E,V

1

Ti

= ∂Si

∂Ei

∣∣∣∣
M,V

. (56)

According to theorem (44), the matrix M is given by

M → Mij =




0 0T 0

0
dP̃ i dP̃ T

j

2kB dt
dP̃ i dẼj

2kB dt

0
dẼi dP̃ T

j

2kB dt
dẼi dẼj

2kB dt


 . (57)
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The elements of the matrix M are obtained by using the definitions (47) and the property
(51). The result is

dP̃ α
i dP̃

β

j

dt
= δij

[∑
k

B2
ik

2

(
δαβ + eα

ik · eβ

ik

)]
− B2

ij

2

(
δαβ + eα

ij ·eβ

ij

)

dP̃ α
i dẼj

dt
= −δij

[∑
k

B2
ik

2

(
vα
ik

2
+ eik · vik

2
eα
ik

)]
− B2

ij

2

(
vα
ij

2
+ eij · vij

2
eα
ij

)

dẼidP̃ α
j

dt
= −δij

[∑
k

B2
ik

2

(
vα
ik

2
+ eik · vik

2
eα
ik

)]
+
B2

ij

2

(
vα
ij

2
+ eij · vij

2
eα
ij

)
(58)

dẼidẼj

dt
= δij

[∑
k

B2
ik

2

((vik

2

)2
+
(
eik · vik

2

)2
)]

+
B2

ij

2

((vij

2

)2
+
(
eij · vji

2

)2
)

+ δij
∑
k

C2
ik − Cij .

We are now in a position to write the deterministic irreversible part of the dynamics
ẋ|irr = M ∂S

∂x
, which will be given by
 Ṁi

Ṗ i

Ėi




|irr

=
∑
j

Mij




−µj

Tj

0
1
Tj


 . (59)

The matrix multiplication leads readily to the following equations

Ṁi |irr = 0

Ṗ i|irr = −
∑
j

aij (vij + eij ·vijeij ) (60)

Ėi|irr = −
∑
j

cij (Ti − Tj ) +
1

2

∑
j

aij
(
v2
ij + (vij · eij )

2
)

where we have introduced the following quantities

aij = B2
ij

8kB

(
1

Ti

+
1

Tj

)
cij = C2

ij

2kBTiTj

. (61)

If we make the assumptions

aij = η
Aij

Rij

cij = λ
Aij

Rij

(62)

where η is the bulk viscosity, λ the thermal conductivity and Aij the area of the face i, j, the
final deterministic irreversible part of the dynamics (60) becomes

Ṁi |irr = 0

Ṗ i|irr = −η
∑
j

Aij

Rij

(vij + vij ·eijeij ) (63)

Ėi|irr = −
∑
j

λ
Aij

Rij

(Ti − Tj ) +
η

2

∑
j

Aij

Rij

(
(vij ·eij )

2 + v2
ij

)
.

These equations are identical to those obtained in [5] except for the presence in [5] of a term
describing the advection of kinetic energy between cells. This term is very small as it is of
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third order in vij as compared to the second-order terms in the rest of the energy equation.
In the continuum limit where vij is replaced by gradients in velocity such higher order terms
are discarded. Note that the second equation in (62) is basically the requirement that the bulk
viscosity ζ = 2η/D, an assumption made in [5]. Of course, this restriction can be relaxed if
desired.

From equations (61) and (62), the functions Bij , Cij are given by

Bij =
(

8kBη
TiTj

Ti + Tj

Aij

Rij

)1/2

Cij =
(

2kBλTiTj

Aij

Rij

)1/2

. (64)

B. Stochastic equations

We are still not done, because in order to write the correct Itô stochastic equations
dx|irr = M ∂S

∂x
+ kB

∂M
∂x

+ dx̃, we need to compute the term kB
∂M
∂x

. This term can be understood
essentially as coming from the stochastic interpretation selected, which is the Itô interpretation.

The derivatives of the matrix M are explicitly written as

∑
j

∂

∂xj
Mij =

∑
j




0∑
j

∂
∂P j

dP̃ idP̃ j

2kBdt +
∑

j
∂

∂Ej

dP̃ idẼj

2kBdt∑
j

∂
∂P j

dẼidP̃ j

2kBdt +
∑

j
∂

∂Ej

dẼidẼj

2kBdt


 . (65)

By using the results (58) it is easy to compute the above derivatives.

kB
∑
j

∂

∂P j

dP̃ idP̃ j

2kBdt
= 0

kB
∑
j

∂

∂Ej

dP̃ idẼj

2kBdt
= −η

∑
j

Aij

Rij

dij (vij + vij ·eijeij )

(66)

kB
∑
j

∂

∂P j

dẼidP̃ j

2kBdt
= (D + 1)kB

∑
j

Aij

Rij

(
TiTj

Ti + Tj

)(
1

Mi

+
1

Mj

)

kB
∑
j

∂

∂Ej

dẼidẼj

2kBdt
= η

2

∑
j

Aij

Rij

dij
(
(vij ·eij )

2 + v2
ij

)
+ λ
∑
j

Aij

Rij

[
kBTj

Ci

− kBTi

Cj

]

where we have introduced

dij = 1

(Ti + Tj )2

[
T 2
j kB

Ci

+
T 2
i kB

Cj

]
. (67)

Note that dij is a dimensionless quantity involving the heat capacity at constant volume of
mesoparticle i, Ci. For mesoscopic particles, kB/Ci is a small quantity.

Finally, the irreversible stochastic differential equation dx|irr = M ∂S
∂x

dt + kB
∂M
∂x

dt + dx̃
becomes

dMi|irr = 0

dP i |irr = −η
∑
j

Aij

Rij

(1 + dij )
(
vij + eij ·vijeij

)
dt + dP̃ i

(68)
dEi|irr = −

∑
j

λ
Aij

Rij

(Ti − Tj ) dt +
η

2

∑
j

Aij

Rij

(1 + dij )
(
(vij ·eij )

2 + v2
ij

)
dt − λ

∑
j

Aij

Rij

×
(
kBTi

Cj

− kBTj

Ci

)
dt − (D + 1)ηkB

∑
j

Aij

Rij

TiTj

Ti + Tj

[
1

Mi

+
1

Mj

]
dt + dẼi .
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To leading order in kB/Ci (which is typically the inverse number of atoms in the cell) these
equations coincide with the corresponding equations in [5]. However, in [5] the terms
proportional to dij and kB/Ci are not present, as terms of relative order kB/Ci are discarded
throughout.
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